3 research outputs found

    Ejection of marine microplastics by raindrops : a computational and experimental study

    Get PDF
    Abstract Raindrops impacting water surfaces such as lakes or oceans produce myriads of tiny droplets which are ejected into the atmosphere at very high speeds. Here we combine computer simulations and experimental measurements to investigate whether these droplets can serve as transport vehicles for the transition of microplastic particles with diameters of a few tens of μm from ocean water to the atmosphere. Using the Volume-of-Fluid lattice Boltzmann method, extended by the immersed-boundary method, we performed more than 1600 raindrop impact simulations and provide a detailed statistical analysis on the ejected droplets. Using typical sizes and velocities of real-world raindrops – parameter ranges that are very challenging for 3D simulations – we simulate straight impacts with various raindrop diameters as well as oblique impacts. We find that a 4mm diameter raindrop impact on average ejects more than 167 droplets. We show that these droplets indeed contain microplastic concentrations similar to the ocean water within a few millimeters below the surface. To further assess the plausibility of our simulation results, we conduct a series of laboratory experiments, where we find that microplastic particles are indeed contained in the spray. Based on our results and known data – assuming an average microplastic particle concentration of 2.9 particles per liter at the ocean surface – we estimate that, during rainfall, about 4800 microplastic particles transition into the atmosphere per square kilometer per hour for a typical rain rate of 10 mm h 10mmh10 \frac {\text {mm}}{\mathrm {h}} and vertical updraft velocity of 0.5 m s 0.5ms0.5 \frac {\mathrm {m}}{\mathrm {s}}

    Comparison of free-surface and conservative Allen-Cahn phase-field lattice Boltzmann method

    Full text link
    This study compares the free-surface lattice Boltzmann method (FSLBM) with the conservative Allen-Cahn phase-field lattice Boltzmann method (PFLBM) in their ability to model two-phase flows in which the behavior of the system is dominated by the heavy phase. Both models are introduced and their individual properties, strengths and weaknesses are thoroughly discussed. Six numerical benchmark cases were simulated with both models, including (i) a standing gravity and (ii) capillary wave, (iii) an unconfined rising gas bubble in liquid, (iv) a Taylor bubble in a cylindrical tube, and (v) the vertical and (vi) oblique impact of a drop into a pool of liquid. Comparing the simulation results with either analytical models or experimental data from the literature, four major observations were made. Firstly, the PFLBM selected was able to simulate flows purely governed by surface tension with reasonable accuracy. Secondly, the FSLBM, a sharp interface model, generally requires a lower resolution than the PFLBM, a diffuse interface model. However, in the limit case of a standing wave, this was not observed. Thirdly, in simulations of a bubble moving in a liquid, the FSLBM accurately predicted the bubble's shape and rise velocity with low computational resolution. Finally, the PFLBM's accuracy is found to be sensitive to the choice of the model's mobility parameter and interface width
    corecore